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Monitoring Persistent Coal Fire Using Landsat
Time Series Data From 1986 to 2020
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Abstract— Coal fires pose great threats to valuable energy
resources, the ecological environment, and human safety. They
are one of the most persistent fires on the Earth, which can burn
for an extremely long-term period from decades to hundreds or
even thousands of years. Remote sensing detection of coal fires
is of significance for mitigating coal fire hazards. Nevertheless,
short-term or temporal discrete land surface temperature (LST)
data have limited capability in characterizing the persistent coal
fire. This study proposed a methodology to monitor persistent
coal fires using long-term Landsat thermal images and fur-
ther to analyze spatiotemporal dynamics of coal fires. A total
of 1118 high-quality Landsat images (each image containing
446 x 446 pixels) spanning 35 years from 1986 to 2020 in
the Wuda coalfield area (China) were processed to retrieve the
LST. LST time series of each pixel was decomposed into the
seasonal, trend, and remainder components. Coal fire areas were
demarcated by using the range of the trend components. To trace
the trend and change point of the LST time series, the Mann—
Kendall test was applied to the trend components, and the Pettitt
test was employed to the original time series vectors of those
pixels located in the coal fire areas, respectively. The random sam-
ple consensus algorithm was utilized to identify the background
temperature (inliers) and high temperature (outliers) and, thus,
judge the coal fire burning period, and the symbolic aggregate
approximation algorithm was used to evaluate the robustness of
the judgment. The calibration was conducted according to the
filed surveys, obtaining spatiotemporal 3-D coal fire dynamics.
The proposed methodology was testified by comparisons with
fieldwork and regional anomaly extractor algorithm, demonstrat-
ing good performance in comprehensive monitoring of persistent
coal fires.
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I. INTRODUCTION

OAL fires are a global environmental catastrophe [1],

widely spreading in China [2]-[4], India [5], [6], the
USA, South Africa, Indonesia, Russia, and Australia. They
refer to the uncontrollable combustion of coal, which often
occurs underneath the ground surface and is triggered by
mining operations. Subsurface fires can occur in unmined
coal beds when an outcrop ignites, and the combustion front
subsequently propagates along with the buried coal seam into
deeper geological rocks. Coal combustion and gasification
collapse results in ash and void areas, and forms the fissures,
which contributes to the exchanges of gases between the
surface and the coal seam, and accelerates the burning [7]. The
fires can continue to burn for an extremely long-term period of
hundreds or thousands of years [8] until the fuel is completely
burned out [5]. Monitoring the coal fire dynamics is of utmost
necessity for understanding, prevention, and mitigation of coal
fire hazards [5]. Multiple detection techniques such as geo-
physical [9]/geochemical [10], [11], detection and spaceborne
[12]/airborne [8], [13], and remote sensing detection have
been used to demarcate and monitor coal fires. Among these
approaches, spaceborne remote sensing technology is most
commonly employed because it provides cost-effective large-
scale high-resolution thermal infrared (TIR) data and avoids
direct contact with dangerous high-temperature and subsidence
areas [13]-[18].

Currently, algorithms using TIR remote sensing for demar-
cating coal fire and monitoring coal fire dynamics can be
roughly grouped into two categories: 1) monotemporal meth-
ods, including density slicing thermal imagery with fixed
or varying thresholds [19]-[21], the moving window-based
method [12], [22], and the self-adaptive gradient-based thresh-
olding method [23] and 2) multitemporal methods, including
automatically delineation from multispectral satellite data [22],
stacking the coal fires [24], [25], image-differencing algo-
rithm [23], and so on. It is hard for the methods mentioned
above to mitigate the error and misinterpretation of individual
LST pixels caused by the environmental context due to the
lack of temporally correlated information. Moreover, coal
fire persistently burns for an extremely long period. The
short-term multitemporal methods divide persistent coal fires
into several discontinuous ‘“slices” and observe them from
the short-term perspective. They fail to improve the under-
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standing of the spatiotemporal evolution from the life-cycle
point of view [26]. By contrast, long-term monitoring takes
advantage of holistically characterizing the burning stages and
predicting the coal fire propagation. Pandey et al. [27] pro-
duced a temporal transition map during the years 1988-2013
based on the spatial distribution of thermal anomalous area
in Jharia coalfield using overlay analysis of six images in
every successive five years. Jiang er al. [28] assessed the
status and effectiveness of the underground coal fire suppres-
sion efforts in Wuda coalfield using eight Landsat images
from 2000 to 2015. Mishra et al. [29] extracted the coal
fire map from four Landsat images at a five-year interval in
2001-2016, showing the propagation direction and the status
of coal fires. Although, in these studies, the time span of
satellite images was larger than ten years, imagery data are
quite sparse due to less than one thermal infrared image per
year. Mujawdiya et al. [30] first proposed the application of
time series decomposition in pixel scale for detecting and char-
acterizing coal fire using 782 available MODIS LST products
spanning 2001-2017 in several typical coal fire pixels with
about 1-km spatial resolution, in which the Mann—Kendall
method [31], [32] was used for the background annual trend
segmentation. However, the low spatial resolution of MODIS
images was not beneficial for coal fire demarcation.

In this study, we propose an approach for medium-resolution
(30 m) long-term (35 years) pixelwise LST time series analysis
to demarcate coal fire areas and characterize the persistent
dynamics. The statistical information of trend components
is used as a criterion to identify the coal fire areas. The
Mann—Kendall test [31], [32] and the Pettitt test [33] are
applied for the trend and change point detection in these
coal fire areas. The random sample consensus (RANSAC)
algorithm [34] is utilized to the coal fire pixels identifying

Wuda district
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background temperature when there were no fires and further
to judge the coal fire burning period, and the symbolic
aggregate approximation (SAX) algorithm is used to evalu-
ate the robustness of the judgment. The advantages of this
methodology include addressing the uncertainty caused by
data quality [35] and preprocessing, capturing the persistent
features of coal fire dynamics, and providing a comprehen-
sive understanding of the spatiotemporal patterns of coal fire
hazards.

This article is organized as follows. Section II presents
the study area and the data sources. Section III provides
the methodology and associated theoretical framework. The
results of the case study are performed in Section IV and are
comprehensively discussed in Section V. The conclusions are
drawn in Section VL.

II. STUDY AREA AND DATA SOURCES
A. Study Area

The study area is located in the Wuda district of Wuhai
City, Inner Mongolia Autonomous Region, China (see Fig. 1).
The area has a strongly continental climate. The annual
precipitation is 168 mm, and evaporation is 3500 mm [36]. The
average annual temperatures are around 9 °C with a minimum
of —26 °C and a maximum of 40 °C [37], respectively. The
land cover mainly includes coal and coal waste, sediments,
metamorphic and pyrometamorphic rocks, vegetation, and
water [38].

The coal-bearing strata originate from the Pennsylvanian
and Permian ages [40]. The first recorded coal fire in the
Wuda coalfield was in 1961 when self-ignition occurred in
the Suhaitu Coal Mine and was then frequently detected in the
following decades. In 1978, there were only six coal fire areas,
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while the number increased to 16 and 18 in 2000 and 2004,
respectively, and even more in 2010 [41]. Fire-fighting activi-
ties were started in early 2000 and undertaken on a large scale
since 2006. The activities are scheduled to be finished by the
year 2013 when all coal fires should have been extinguished.
However, field surveys showed that blasting and excavation
operations contribute to spontaneous combustion [39], [42],
and even abandoned coal waste piles began to ignite [39].

B. Data Sources

1) Landsat Data: Short-wave and thermal infrared Landsat
series data have been acquired and archived since 1982.
Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced The-
matic Mapper Plus (ETM+), and Landsat 8 Operational Land
Imager (OLI) and Thermal Infrared Sensor (TIRS) are three
of the Landsat series of the National Aeronautics and Space
Administration. The series data are available on the Earth
Explorer websites and have been widely utilized to retrieve
LST. The failure of the scanline corrector (SLC-off) caused
gaps in the Landsat 7 ETM+ data, resulting in approximately
22% data loss in each image. These gaps are treated as
void values. Landsat 8 TIRS measures land surface tem-
perature in two thermal bands (bands 10 and 11). Artifacts
can be observed in the TIRS data, including banding and
absolute calibration discrepancies. Some calibration has been
done to keep the consistency in the whole Landsat archive
[35], [43], [44]. A total of 1118 high-quality cloud-free
thermal infrared images acquired between July 31, 1986, and
November 1, 2020, in the Wuda coalfield area, were used.
Two paths of images, which are path 130 (row 32) and path
129 (row 33), covered the study area. The acquisition time of
Landsat images is shown in Fig. 2. The coordinate ranges are
106.58-106.7 °E longitude and 39.46-39.58 °N latitude, and
thus, the numbers of pixels in the east-west and south—north
directions are 446 and 446.

2) Field Survey Data: Field survey data associated with
thermal anomalies in 2002, 2003, 2004, 2005, 2006, 2008,
2010, 2014, and 2018 were collected from the literature [12],
[36], [39], [41], [42]. The field data were collected mainly by
using a handheld radiant thermometer and a global positioning
system (GPS) device for navigation. In the fieldwork on
September 23, 2002, the surface temperatures were measured
using thermometers and GPS receivers [12]. Field data in
2003, 2006, and 2008 were collected through airborne thermal
surveys and fieldwork campaigns [36]. In 2004, 2005, and
2010, a very detailed survey was taken in an approximately
regular grid with a radiometer and a GPS device [41].
Stable thermal anomalies from June 2013 to July 2014 were
delineated according to thermal anomalies identified from
Landsat-8 data using the regional anomaly extractor (RAE)
algorithm and confirmed in May 2014 by fieldwork using a
thermometer and a GPS device [42]. In January 2018, a field
survey was taken for investigating smoke spots and coal fire
spots [39].

III. METHODOLOGY

The overall workflow is shown in Fig. 3. In the first
part, the multitemporal LST data are retrieved from Landsat
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images by using an open-source code [45] in the Google
Earth Engine (GEE) platform. The high-quality LST data
generate pixelwise time series vectors at all pixels at a
temporal scale of 16 days or multiples of 16 days for each
path.

The second part details the application of the LST time
series decomposition method. The seasonal trend decompo-
sition based on locally weighted regression smoother (STL)
method [46] is applied, where seasonal smoothing and trend
smoothing processes are repeated several times to improve
the accuracy of the estimations of the seasonal, trend, and
remainder components.

The mean, standard derivation, and the range (the difference
between the highest and lowest) values of the trend compo-
nent of each pixel are calculated, and the range values are
used to identify the coal fire areas. The Mann—Kendall test
[31], [32] and the Pettitt test [33] are applied on the pixelwise
trend components vectors and the original pixelwise LST
time series vectors at those pixels located in the coal fire
areas, respectively, detecting the trend and the change point
of the long-term coal fire dynamics. The random sample
consensus (RANSAC) algorithm [34], estimating the para-
meters optimally fitting the data with outliers, is applied on
the trend components. It was used to detect the background
temperature and further to judge the coal fire burning period.
LST values greater than the fit line (background temperature)
by a given value are considered to be within the coal fire
burning period. To evaluate the robustness of the judgment,
the symbolic aggregate approximation (SAX) algorithm is
applied to check the position of the fit line in the range of the
LST values. Finally, the calibration and validation of long-
term coal fire dynamics are conducted through the coal fire
zones obtained from field surveys and the RAE [22], [42]
algorithm.

A. Land Surface Temperature Retrieval

LST is estimated from the Landsat series images using
the GEE open-source code [45]. GEE, launched in 2010 and
powered by Google’s cloud infrastructure, is a cloud-based
platform that enables big data analyses without computa-
tion resources [47]. The platform provides a data catalog
that stores a large quantity of geospatial data, including
climate and weather data, spaceborne and airborne optical
and radar imagery, and geophysical datasets [47]. All the
Landsat Level-1 and Level-2 data can be queried, visualized,
and analyzed on GEE, including top-of-atmosphere (TOA) and
surface reflectance data.

Ermida et al. [45] provided the open-source code repository
for computing LST from Landsats 4, 5, 7, and 8, which can
help to monitor long-term coal fires. The Landsat series data
are intercalibrated, and all TIR bands have been resampled
to 30-m spatial resolution. In their method, the input data
include Landsat data, atmospheric data, and surface emissivity.
The LST is retrieved by using the statistical mono-window
algorithm developed by the Climate Monitoring Satellite
Application Facility [48]. The method is based on an empirical
relationship between TOA brightness temperatures and LST.
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They build a simple linear regression model

Tb 1
LST = A;— + B;— + C;
& &

(1)
where Tbh is the TOA brightness temperature in the TIR
channel and ¢ is the surface emissivity for the same channel.
The algorithm coefficients A;, B;, and C; are determined from
linear regressions of radiative transfer simulation. They were
obtained by the calibration database, which has been derived
by using a dataset of air temperature, water vapor, and ozone
profiles.

The quality of the algorithm is evaluated by comparing the
retrieved LST data with observations from in situ LST stations,
where the land cover includes grassland, shrubland, cropland,
desert, and savanna. The overall root mean square errors from
the 12 stations are 1.3 K, 1.1 K, and 1.0 K for Landsats 5,
7, and 8, respectively. Detailed information can be referenced
in [45].

B. Seasonal Trend Decomposition Based on LOESS

The seasonal trend decomposition based on LOESS
(STL) [46] method is applied in this study, which has also
been used in Mujawdiya et al.’s study [30]. LOESS is short
for locally weighted regression smoother. The STL procedure
is implemented in an iterative cycle of detrending and updating
the seasonal component. The iterative cycle includes two
recursive procedures: an outer loop and an inner loop nested
inside the outer loop. Each pass of the inner loop applies
seasonal smoothing and trend smoothing that updates the
seasonal and the trend components [46].

The most attractive feature of the STL decomposition is its
strong resilience to outliers, generating versatile and robust
components [49]. Furthermore, it can handle any type of
seasonality data and is not restricted to monthly, quarterly,
and annual data. Besides, the STL procedure is implemented
relying on numerical methods, and thus, it does not need
mathematical modeling. The disadvantages are that it does not
handle calendar variation automatically, and it is only appro-
priate for additive decompositions. The STL decomposition
procedure can readily be implemented in the R language using
the function “stl” [50] and in the Python language [51] using
the function “stldecompose” provided by Josh Montague.

In detail, in this study, using the Python language, the LST
time series calculated from Landsat images are resampled
to every eight days. For the period, an input parameter that
represents the most significant periodicity in the time series
observations is set to 46; the “lo_frac,” which is the fraction
of data to use in fitting Lowess (locally weighted scatterplot
smoothing) regression, is set to 0.09, indicating that the
smoothing window is about three years; and the “lo_delta,”
which is the fractional distance within which to use linear
interpolation, is set to 0.01, as the default.

C. Monitoring Coal Fire Dynamics

1) Mann—Kendall Test for Trend Detection: For trend detec-
tion, the Mann—Kendall test is the most commonly used
method. The Mann—Kendall test, proposed by Mann [31] and
Kendall [32], is a nonparametric test to statistically assess
whether a time series has a monotonic upward or downward
trend. The null hypothesis Hj is that the data are indepen-
dently and randomly ordered without monotonic trend, and
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the alternative hypothesis H; is that the data have a monotonic
trend.

For the time series xi, ..
Mann-Kendall test is

n—1 n
Sk = Z Z Sgn{xj - xi} (2)

., X,, the test statistic of the

i=1 j=i+1
where
1, Xj—Xi > 0
sgn{xj—xi}z 0, xj—xi=0 (3)
—1, Xj— Xi < 0.

Smi 1s asymptotically normally distributed. Under the null
hypothesis, when there are no ties in data, it has expectation
and variance as follows:

E[Smk] =0
Var[S,x] = n(n — 1)(2n + 5)/18. 4)

Providing that the following Z-transformation is employed:

Smk —1 if S O
—_—, 1 >
NAC m
ka = 0; if Smk =0 (5)
Sﬂl 1 .
£t if S, <0.

VVar[S,ul’

If Z,x > 0, it indicates an increasing trend. Given a certain
confidence level a, if |Z,x| > Z(1 — a/2), the sequen-
tial data would have a statistically significant trend. Here,
Z(1 — a/2) is the corresponding value of P = a/2 following
the standard normal distribution. & = 0.05 was adopted as the
confidence level in this study. The approximate p-value is then

calculated as
Pmi = 2min(0.5, P(X > |Zk])), X ~n(0,1).  (6)

Besides, the magnitude of the trend is estimated by Sen’s
slope, which is

p = Median(x{ - ’f”), j>i %
J —1

If § > 0, it indicates an upward trend and, otherwise,
a downward trend. The Mann—Kendall test procedure can
be implemented in the Python language using the function
“pymannkendall” provided by Shourov er al. [52].

2) Pettitt Test for Abrupt Change Point Detection: For
change point detection, the Pettitt test [33] is the most
commonly used method because of its sensitivity to breaks.
It assumes that the observations generate an ordered sequence
of observations. Initially, the distribution of the sequences has
one location parameter, and at some point, there is a shift
in the location parameter. The null hypothesis Hy is that the
variables follow the same distribution; thus, there is no change
in the location parameter, and the alternative hypothesis H; is
that there is a change in the location parameter.

The Pettitt test is a rank-based nonparametric sign test,
which is based on the Mann-Whitney two-sample test.

5001616

The most probable change point ¢ satisfies

r T
S; = max Z Z sgn{xj —xi} . (8)

i=1 j=t+1

Under the null hypothesis, the distribution of S, is symmet-
ric around zero with E(S; = 0). When there is a shift in the
sequence of observations, it is expected to have large values
for S;. For the continuous observations, they follow

t T t
DN sen{xj—x}=2> rn—t(T+1) )
i=l1

i=1 j=t+1
where r; is the corresponding rank of data point x;. The

significance probability p, associated with value S; can be
approximately evaluated as

682
pr=2 exp{ T }

Given a significance level a, if p, < a, the null hypothesis
is rejected, and a conclusion that there is a change point at
level o is drawn. The Pettitt test procedure can be implemented
in the Python language using the function “pyhomogeneity”
provided by Shourov et al. [52].

In detail, in this study, the Pettitt test is iteratively applied
according to the characteristic of homogeneity. If the time
series is nonhomogenous, the change point is accepted, and
the change point detection is continuously applied on the
subtime series. If the period is homogenous, the change point
is rejected, and the detection moves to the next subtime series.
To avoid too many change points within one year, in which
case the mean LST values would be either too high or too
low, the minimum period of subtime series was set to 1 year.

3) Random Sample Consensus (RANSAC) Algorithm: The
random sample consensus (RANSAC) algorithm, proposed by
Fischler and Bolles [34], is an algorithm for the robust fitting
of models when many outliers are presented in the dataset [53].
The basic step is summarized as follows [53].

1) Randomly select the minimum number N points from

totally M points.

2) Estimate parameters for the model.

3) Determine the numbers of points that fit the model
within a predefined tolerance.

4) If the ratio of the number of inliers to the total number
points exceeds a predefined tolerance, reestimate the
parameters using all the identified inliers and terminate.

5) Otherwise, repeat steps 1)-4) for L times.

L can be defined as

(10)

;- logd —p)
log(1 — u™)

where p is the probability of a randomly selected point being
part of a good model. u represents the probability of the
selected data point being an inlier.

An advantage of RANSAC is its ability to make a robust
estimation, estimating the parameters with a high degree of
accuracy in the presence of a significant number of out-
liers [54]. The RANSAC processing can be implemented by
using the function “ransac” in MATLAB [55].

(1)
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In detail, the sample size is set to 2, and the maximum
allowable distance for inliers is set to 1. The RANSAC
algorithm in this study is changed a little to restrict the fit
line horizontal to adapt to the characteristics of the change of
LST, assuming that the background temperature, when there
was no fire, is constant.

4) Symbolic Aggregate Approximation (SAX) Algorithm:
Symbolic aggregate approximation (SAX) is one of the exten-
sions of the piecewise aggregate approximation (PAA), which
represents time series in terms of symbols. PAA is a pop-
ular and simple way of reducing the dimensionality of the
time series by splitting them into equal-sized segments and
replacing the time series with averaged values in each segment.
It transforms a time series X = (xy, ..., x,) into another time
series X = (%, ..., %,) with m < n. If m divides n, then

(n/m)-i
j=/ mz);—l)-?-l

SAX assigns a string representation to the time series.
The time series data can be stored less than other data
mining methods, e.g., discrete Fourier transform and wavelet
transformation.

In this study, the most important role of the SAX method is
to judge the position of the fit line from the RANSAC algo-
rithm in the range of the LST trend component. As assumed
before, in the RANSAC algorithm, the fit line is used as an
indicator for calculating the background temperature. It is a
standard line for the classification of the coal fire period.
If the fit line is located at the bottom of the range of the
LST trend component, the detected background LST value
could be accurate and robust. If the fit line is at the top of the
LST trend component, it is not believable. SAX in this study
can also be used as a simple time series representation with
reduced dimensionality.

In detail, the original LST time series is divided into 35 seg-
ment parts, being each subtime series spanning one year.
The values of each time series are normalized, involving
subtracting the mean of each observation and then dividing
by the standard deviation. The range of the value is divided
into four parts, from low values (bottom) to high values (top),
with the symbol “low,” “medium low,” “medium high,” and
“high.” Then, the location of the fit line from RANSAC is
evaluated. If the line is located in “low” or “medium low,” the
result will be accurate and robust. If not, the result should be
modified according to the field surveys.

X;. (12)

9 ¢

IV. RESULTS
A. LST Retrieval and Time Series Decomposition

The LST at each available Landsat acquisition was retrieved.
The distribution of the LST values was highly consistent with
the coal fire zones detected from the field surveys [12], [36],
[39], [41], [42], the elevation, and the land use [41], [56].
High-temperature pixels were located not only in the coal fire
zones but also in the Gobi-desert-sand, bareland, coal layer,
coal dust, and mixed sandstone with shale areas. The low
temperature indicated the agriculture, urban area, and the high
elevation area [56].
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In noncoal fire areas within the coalfield, the LST has
the same characteristic as the LST in the noncoalfield area.
Therefore, it can be assumed that noncoalfield LST is a
good proxy for nonfire LST within the coalfield. A refer-
ence noncoal fire time series was determined by averaging
the LST values of pixels located outside the coalfield in
each image [30]. This time series was decomposed into
three components by applying the STL decomposition method
showing the long-term average gradual changes of the LST
trend in the background area [see Fig. 4(a)]. The seasonal
component shows the characteristics of annual changes, with
a maximum value of about 20 °C and a minimum value of
about —25 °C. The trend component is smoothing with a
change. The remainder component seems to be noise. A sparse
sampling with a window of 500 pixels in space domain was
applied in the whole study area, including pixels outside
and inside the coalfield, and the trend components of all the
sampled pixels were plotted in Fig. 4(b), showing that almost
all the trends have similar oscillations and slightly increasing
trends, similar to the average trend component in Fig. 4(a).
Three potential reasons are contributing to this increasing
phenomenon: (1) the shifted values introduced during the LST
retrieval, (2) LST increase in the background land possibly
related to the climate effect, or (3) smoothing processing in
the decomposition algorithm. Anyway, the common trend was
mitigated by subtracting the reference noncoal fire trend [see
Fig. 4(a), trend components] from the trend components of
all pixels. After the subtraction, most of the time series are
changeless [see Fig. 4(c)] during the long period, indicating
that they were possible not located in coal fire areas, while the
trend with evident changes could be interpreted that the pixel
is located in coal fire areas.

B. Monitoring Coal Fires Dynamics

1) Identification of Coal Fire Areas: After removing the
reference noncoal fire trend, the mean, the standard deviation,
and the range values of the trend component in each pixel were
calculated and illustrated as maps shown in Fig. 5. The mean
values map [see Fig. 5(a)] did not show evident differences
inside and outside the coalfield. Some areas inside the coalfield
had very high mean values, indicating that these areas were
likely to have experienced coal fires. An area outside the
coalfield in the northeast also had high mean values, which
was possibly due to desert sand, coal dust, and coal processing
operations [42], [57]. Besides, in the southeast area, there were
low values because of the high elevation of the Wuhushan
Mountain. The standard deviation values map [see Fig. 5(b)]
showed that large values were mainly located inside of the
coalfield, and the largest values were located in the center
of the coalfield, indicating that there were large changes in
the trend components. Five coal waste pile fire and two coal
processing operations locations [42] [see Fig. 5(b)] also had
high standard deviation values. The range values map [see
Fig. 5(c)] showed very similar spatial characteristics to the
standard deviation values map [see Fig. 5(b)], where most
of the high values were located inside the coalfield. Large
standard derivation values were also possibly caused by the

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on July 01,2024 at 07:06:03 UTC from IEEE Xplore. Restrictions apply.



CHEN et al.: MONITORING PERSISTENT COAL FIRE USING LANDSAT TIME SERIES DATA FROM 1986 TO 2020

(a)

0

LST
S

Trend Seasonal
N
o

30-‘/\—\/\/\/"\/\’\/
201

201

5001616

¢0) (c)
ot

O L
10t

Residual

0
-201

1985 1990 1995 2000 2005 2010 2015 2020 2025

1985 1990 1995 2000 2005 2010 2015 2020 2025

Fig. 4. STL decomposition of the reference noncoal fire time series (a), showing the average trend, seasonal, and remainder components. Trend components
of sparsely sampled points in the whole study area (b) before and (c) after removing the reference noncoal fire trend.
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large LST oscillation related to the land cover types, while
range values were more ascribed to the coal fire dynamics.
Therefore, range values became the main factor to determine
the coal fire areas. Considering the mean of the range values of
trend components in the background area outside the coalfield,
which is 2.97 °C, the range values higher than 3 °C were
shown in Fig. 5(c), overlaid with coal fire zones from field
surveys. The areas with range values higher than 5 °C were
in good agreement with the coal fire zones; therefore, these
pixels were recognized to be coal fire pixels. Taking into
account Fig. 5(c) and the coal fire zones manufactured from the
field surveys, 16 distributed ground points, named GP1-GP16,
as shown in Fig. 5(a), were selected to test the proposed
methodology.

3.7l 0.21(°C)

(a) Mean, (b) standard deviation, and (c) range value maps of the trend component.

(<5 ][5-8e=11i C©)

2) Trend and Change Point Detection for Ground Points:
The gradual changes of the LST time series at each ground
point were detected by using the Mann—Kendall test on the
trend component vector, showing the increasing or decreasing
trend, and the slope values. The ground points GPS, GP10,
and GP11 were detected without trends. The ground points
GP2 (slope value —0.46 °Cl/year) and GP5 (slope value
—1.43 °C/year) were detected having decreasing trends, and
other ground points were detected with increasing trends.
The slope values, where positive and negative values indicate
increasing and decreasing trends, respectively, were not so
large because of the long period of 35 years. Nevertheless,
the trend and slope values can still indicate that the coal fire
occurred during the early or late stage. The Mann—Kendall test
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Fig. 6.

LST time series of the ground points GP1-GP16, their respective change dates detected by the Pettitt test, and the mean LST values before and

after the change dates. The horizontal straight lines in the subfigures are the mean values of the subtime series. (a) GP1. (b) GP2. (c) GP3. (d) GP4. (e) GP5.
(f) GP6. (g) GP7. (h) GPS8. (i) GP9. (j) GP10. (k) GP11. (1) GP12. (m) GP13. (n) GP14. (o) GP15. (p) GP16.

can be applied to a shorter period within about ten years, which
will have a better performance. Some other time series analy-
ses, such as knee point detection [58] and peak point detec-
tion [59], could be applied to describe the gradual changes.

The abrupt change points of the LST time series at each
ground point were investigated by applying the Pettitt test
on the original LST time series. The algorithm was iterated
according to the characteristic of homogeneity. All the change
points of the 16 ground points were shown in Fig. 6. Also,
the mean LST values before and after the change points were
plotted. The Pettitt test presented an accurate abrupt change
date for the changes. In some short periods with large changes,
the algorithm did not work so well, e.g., the last five or ten
years in GP6, GP7, and GPS8 [see Fig. 6(f), (g), and (h)]; the
change points were too close.

Note that the trend and change point detection was not
always essential and effective for all the pixels in this study.
For one thing, most coal fires, especially underground ones,
last for a long time, and their LSTs were not high enough
to yield trend change or breakpoints. For another, methods
could detect wrong or even opposite tendencies when detecting
breakpoints in time series without breakpoints [60]. Therefore,
trend and change point detection could be implemented only
in those time series with large trend changes.

3) Temporal Evolution of Coal Fires at Ground Points: To
judge the coal fire burning period, the RANSAC algorithm was
applied to the trend component of the 16 ground points. The
trend components and fit lines from the RANSAC algorithm
were plotted in Fig. 7. Taking into account the mean range
values of the pixels in the background, which is 2.97 °C,
the threshold of background LST values range was set to
+1.5 °C. LST trend values that are at least 1.5 °C greater
than the background LST trend values were shown in red
color (see Fig. 7), which are more likely to be coal fire in

that period. Those values that at least 1.5 °C lower than the
background values were shown in blue color. RANSAC works
better than least square to fit the background LST values in
this case, where high changes of LST trend values would have
a great effect on the regression estimation.

To evaluate the feasibility of the proposed method, the coal
fire dynamics of the 16 ground points were validated with
the coal fire zones from the field surveys and compared with
coal fire zones detected from the RAE method. Ground points
GP1-GP16 are mainly located in the coal fire zones (see
Fig. 8). The coal fire or the hot spots were obtained in the
years 2002-2010 by field surveys [12], [36], [39], [41], [42];
the new coal fire zones in 2014 were identified by the RAE
method [22], [42]. The coal fire information extracted from
the proposed methodology and the field survey/RAE method
were listed in Table I before and after the */.” For ground
points, GP1, GP6, GP8, and GP16, the coal fire burning period
detected by our methodology was completely the same as the
coal fire burning period from the field surveys and the RAE
method. For GP2, GP3, GP11, GP13, GP14, and GP15, only
one year of coal fire burning period was not consistent with
the field surveys or the RAE results. GP9 and GP10 show two
years’ bias. GP4, GP5, GP7, and GP12 seemed to have evident
biases with the field surveys. Nevertheless, if the fit lines of
the four points were shifted down a bit, the situations from
the proposed methodology and the field surveys or the RAE
method will be much more similar. Especially, for GP12, the
true background value seemed to be 2 °C lower than the fit
line. In this case, after shifting the fit line down 2 °C, there
were coal fires, which were close to the situation from the
field surveys in the period 1995-2005, there were coal fires
close to the situation from the field surveys. Fig. 8 shows four
photos taken at GP7, GP9, GP10, and GP13 in 2014 in situ
field campaign (modified from [42]).

Authorized licensed use limited to: TONGJI UNIVERSITY. Downloaded on July 01,2024 at 07:06:03 UTC from IEEE Xplore. Restrictions apply.



CHEN et al.: MONITORING PERSISTENT COAL FIRE USING LANDSAT TIME SERIES DATA FROM 1986 TO 2020

5001616

-5

1985 1995 2005 2015 20251985 1995 2005 2015 20251985 1995 2005 2015 20251985 1995 2005 2015 2025

Fig. 7. Trend components of LST time series in the locations of ground points GP1-GP16. The gray horizontal lines represent the fit lines from the RANSAC
algorithm, indicating the initial background LST values. The yellow horizontal lines are the new background LST values lines after the calibration of the fit
lines with the field surveys (calculated in Section IV-C). The red and blue dashed lines are the lines with values 1.5 °C above and 1.5 °C below the calibrated
background LST values lines [in subfigures (e), (g), (1), and (n)] or the initial background LST values lines [in subfigures (a)—(d), (f), (h)—(k), (m), (o), and
(p)l. (a) GP1. (b) GP2. (c) GP3. (d) GP4. (e) GP5. (f) GP6. (g) GP7. (h) GP8. (i) GP9. (j) GP10. (k) GP11. (I) GP12. (m) GP13. (n) GP14. (o) GPI5.

(p) GP16.

TABLE I

COAL FIRE BURNING INFORMATION OF GROUND POINTS GP1-GP16 INVESTIGATED FROM THIS STUDY (BEFORE “/”’) AND OBTAINED FROM
FIELD SURVEYS IN NINE YEARS FROM 2002 TO 2018 AND FROM THE RAE METHOD IN 2014 (AFTER “/”)

Ground points 2002 2003 2004 2005 2006 2008 2010 2014 2018
GP1 no / no no / no no / no no / no no / no no / no fire / fire  fire / - fire / -
GP2 no / no no / fire no / no fire / fire  fire / fire  no / no no / no no /- no / -
GP3 no / no no / no no / no no / no no / no no / no fire / no fire / fire no /-
GP4 no / no no / fire no / no no / fire no / fire fire / fire  fire / no fire / - fire / -
GP5 fire / fire  no / fire no / fire no / fire no / fire no / no no / no no /- no / -
GP6 no / no no / no no / no no / no fire / fire  fire / fire fire / fire fire / - fire / -
GP7 no / fire no / no no / fire no / fire no / fire no / no no / no fire / fire  fire / -
GP8 no / no no / no no / no no / no no / no no / no no / no no/ - fire / fire
GP9 no / no no / no no / no no / no no / no no / no fire / no no / fire fire / -
GP10 no / no no / fire no / no no / no no / no no / no no / no no / fire fire / -
GPI11 fire / no no / no no / no no / no no / no no / no no / no fire / fire no /-
GP12 no / fire no / fire no / fire no / fire no / fire no / fire fire / no no /- no / fire
GP13 no / fire fire / fire  fire / fire  fire / fire fire / fire fire / fire fire / fire  fire / fire  fire / -
GP14 fire / fire  fire / fire fire / fire  no / fire fire / fire  fire / fire fire / fire fire / - no/ -
GP15 no / no no / no no / no no / no no / no no / no no / fire no /- fire / -
GP16 no / no no / no no / no no / no no / no no / no no / no fire / fire  fire / -

C. Spatiotemporal Dynamics Model of Coal Fires

1) Developing Spatiotemporal 3-D Coal Fire Model: For all
pixels in the coal fire areas from 1986 to 2020, the RANSAC
algorithm was performed for judging the burning period. The
judgment was visualized in a spatiotemporal 3-D (longitude,
latitude, and time) model in Fig. 9(a) and (b) with pixels
sparsely sampled in a 5 x 5 pixels window. The red color
represents that the LST values were at least 1.5 °C greater
than the background LST values, indicating a burning coal
fire; the blue color shows that the LST values were at least
1.5 °C lower than the background LST values, suggesting low
temperature in that period.

From the above analysis, the bar with much blue color but
a little red color should be paid more attention to because

of the inaccuracy of the RANSAC estimation affected by a
large number of outliers, i.e., coal fire burning for a long
period. To evaluate the accuracy of the identification of the
coal fire burning period from the RANSAC algorithm, the
SAX algorithm was applied to the trend components of these
coal fire pixels. The values of the trend components were
classified into four sections, with values from low to high
symbolized by “low, ” “medium high,” and

ELINNYS

medium low,
“high.” Fig. 9(c) shows the symbol that the fit line of each
pixel belongs to. Pixels labeled with the symbol “low” mean
that the fit line of that pixel is in the lowest section of the
trend component time series, indicating that the outliers are
higher than the fit line. This is true for coal fire identification
because coal fire temperatures are higher than background
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Observed (a) shallow burning coal seam located in ground point GP7, (b) burning coal waste pile located in GP9, (c) smoke emitting from rock

lumps located in GP10, and (d) vent located in GP13 in the 2014 in situ field campaign. (Photograph by Zeyang Song in 2014, modified from [42]).
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(a) and (b) Coal fire dynamics before calibration. The bar from the bottom to the top indicates the period from 1986 to 2020. The red color indicates

that, in that period, the LST values were at least 1.5 °C greater than the background LST values; the blue color indicates that, in that period, the LST values
were at least 1.5 °C lower than the background LST values. (c) Symbols that the fit lines belong to in the range of the trend components.

temperatures. Therefore, the detection of coal fire dynamics
at pixels with the symbol “low” can be regarded as accurate
and robust. The detection at pixels labeled with the symbol
“medium low” is a little worse than “low,” followed by those at
pixels labeled with the symbol “medium high.” The detection
of pixels labeled with the symbol “high” means that the fit line
is on the top section of the trend components time series. It is
the worst case because the outliers are below the fit line, and
consequently, no coal fire was detected in this case. This is
possible because of the long period of coal fire burning causing
large numbers of high LST values. Therefore, the fit line needs
to be calibrated to adapt to the actual cases according to
the field survey, to track the actual spatiotemporal characters
of the coal fire dynamics, and further to provide modified
standard background LST values for the future monitoring of
the fire.

2) Calibration Using Field Surveys in 2002—2005: The coal
fire zones delineated from field surveys in 2002-2005 were
employed for the calibration of the fit lines from the RANSAC
algorithm. The coal fire zones in the 2006-2010 field surveys,
the hot spots in 2018, and the new coal fire zones detected
by the RAE method in 2014 were used for validation. For the
calibration, first, the numbers of burning years of each point
from the filed surveys in 2002-2005 were counted. Taking
GP1-GP5 as an example, those numbers are 0, 2, 0, 2, and 4
(see columns 2—5 in Table I). This number of years is set as
a threshold for each point. If burning information extracted
from this study and the field surveys have biases less than
the thresholds, their fit lines from the RANSAC algorithm
were kept. Otherwise, the fit lines were iteratively shifted
down with a step of 0.1 until the biases meet the thresholds.
Here, the thresholds for the ground points GP5, GP7, GP12,
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Fig. 10. Calibrated low, background, and high values from this study and the coal fire zones from field surveys in the years 2002-2010 and 2018, and the
RAE method in the year 2014. Field survey data in 2002-2005 were used for calibration. Field survey data in 2006-2010 and 2018, and the RAE result
in 2014 were used for validation. Red pixels are highly associated with coal fire areas.

and GP14 were four, three, four, and four years. However,
they were detected with only one-, one-, zero-, and three-year
consistencies with the field survey. The fit lines were iteratively
shifted down by a step of 0.1 until the consistency reaches the
thresholds. The calibrated fit lines were the yellow horizontal
lines shown in Fig. 7(e), (g), (1), and (n). The calibration
process was also taken to all the coal fire pixels.

3) Validation With Field Surveys and RAE Method: The
calibrated coal fire dynamics for all the coal fire pixels in the
years when there was field survey data or RAE result were
shown in Fig. 10, overlaid with coal fire zones or hot spots
from field surveys or the RAE method. Statistics were made to
show the consistency between the detected high-temperature
values and the coal fire zones from the field surveys. In each
coal fire zone, if the number of high-value (red) pixels is
more than that of background/low value (gray/blue) pixels, the
coal fire zone is recognized as the high-value zone. If those
numbers are equal or there was no pixel inside that coal
fire zone, the zone will be excluded from the statistic. The
number of high-value zones in the year 2002 accounts for
5/8 of the coal fire zones, which means that 62.5% of the
coal fire zones were recognized as high-value zones by the
proposed method. The percentages for the recognized high-
value zones are 53.3% in the year 2003, 66.7% in 2004,
85.7% in 2005, 26.7% in 2006, 50% in 2008, 50% in 2010,

and 66.7% in 2014. Although the percentage is not so high,
the spatial distribution of the recognized high-value zones is
consistent with the spatial distribution of zones from field
surveys. In the years 2002-2005, whose field survey data were
used for the calibration, the estimated coal fire pixels showed
very high consistency with the field surveys, with more than
50% of high-value zones. For the years 2006, 2008, and 2010,
which work as validation data, the coal fire areas were not so
consistent with 50% or less than 50% of high-value zones,
but the spatial distribution was very close. In the year 2018,
the high-value zones were consistent with the field surveys
in the edge area without opencast blasting and excavating
mining activities [39]. Two of the three new coal fire zones
in 2014 detected by the RAE method were completely in
agreement with the high values from this study. The validation
confirmed that most of the high values in the years 2002-2010
and 2014 and in the edges areas in 2018 were coal fires.

4) Spatiotemporal 3-D Coal Fire Model: After the calibra-
tion, the spatiotemporal 3-D coal fire model was shown in
Fig. 11, which presented more complex and detailed coal fire
dynamics. In the north part of the coalfield around the coal fire
zone 1, there were some high LST values in the past, but, now,
they are background values or low values. It indicates that,
in the past, this area has experienced coal fires, but, now, the
fire is distinct, which is true compared with the field surveys.
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In the west part of the coalfield close to the coal fire zones 6
and 9, the areas were in background LST values in the early
years but in high values within the recent five years, indicating
that they are newly ignited fires. This situation is similar to the
ground points GP18, which were detected to be the hot spot in
the field survey in the year 2018 (see Fig. 10), but no coal fire
in the period 2002-2010. In the center of the coalfield, one part
around the coal fire zone 18 is in red, which means that they
are in high values in the current period, but the actual situation
cannot be determined because of the opencast blasting and
excavating mining activities [39]. The area between the coal
fire zones 8 and 10 is in blue in the top part of the bars, which
means that they are in low values in the current period, but,
before the calibration, in the early period, it did not show any
red color. This is not the same as the field surveys because
there were fires in the past. After the calibration of the fit
lines according to the fieldwork, the situation changes, which
is very similar to the ground points GP11 and GP12.

This spatiotemporal 3-D model also makes the monitoring
of coal fire spatial propagation possible. High-resolution long-
term coal fire burning stages provide a more detailed coal
fire propagation in the spatial domain. The temporal coal fire
dynamics in the study area show an evident spatial correlation
inside each coal fire zone. At the beginning of the study period,
from 1986 to 1990, there were just a few coal fire areas in
the south. In the years 1990-1995, a coal fire area appeared
in the east and several very small coal fire areas appeared in
the south. In 1995-2000, the coal fire areas expanded, and
in 2000-2005, the coal fire areas were larger. In 2005-2010,
the coal fire areas became larger than before, and there was
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o normal
= high

Spatiotemporal evolution of coal fires in the Wuda coalfield. Red pixels indicating high LST values have a great possibility to be coal fires.

a large coal fire area in the south. Some low LST values
were appeared in this period possibly because of the fire-
fighting activities, e.g., spraying of water. In 2010-2015, the
coal fire areas were decreased, and low values were increased,
indicating the conduction of fire-fighting activities. Coal fires
were mainly located in the north in that period. In 2015-2020,
there were large areas of low values, but also large areas of
high values appeared as several clusters. Near the edge of the
coalfield, especially in the western part, the high values are
validated to be coal fire spots in 2018, but, in the center of
the coalfield, the high values were not validated because of
the opencast blasting and excavating mining activities there.
From the geological and geomorphological point of view,
the longwall mining, depth of coal seam, overlying rock
properties, and geological fault were significant factors for the
coal fire dynamics. Seven boreholes were drilled during the
geological surveys [61]. In the north part of Huangbaici Coal
Mine, the rare coal fires could be due to the deeper coal seam
and stiff overlying rocks. In the Suhaitu Coal Mine, most of
the coal fires were triggered by longwall mining activities [61].
In the south of the coal fire zones 2 and 3, extracted coal seam
formed a caved zone, i.e., overlying rocks collapse, leading to
subsidence. When the depth of extracted coal seam is shallow,
cracks and fissures were generated. The main overlying rock
layers in that area consisted of shales, which were prone to
mechanical failure. Fieldwork confirmed that the ventilation
pathways existed in the coal fire zones. Around coal fire
zone 3, several faults existed [61] with cracks confirmed by
the field surveys [62], promoting coal fire propagation. It could
be the possible explanation for more coal fires appearing
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in zone 3 after 2010. In zone 8, the coal fire was mainly
associated with outcrops of the coal seam. The fire had been
burning for a long period before 2005, but it was not so evident
after 2006. Coal fire in zone 11 was caused by private mining
activities, which seems decreased significantly after the year
2010, possibly due to the fire-fighting activities.

V. DISCUSSION

Coal fires are extremely complex, unpredictable, and
uncontrollable processes, influenced by geological condi-
tions, climate environment, and human activity. The proposed
methodology has some merits in monitoring coal fire dynam-
ics. First, it improves the accuracy of identifying coal fire
in the temporal domain. The long-term time series analysis
of LST in pixel scale can mitigate the influence of land
geological condition, land use, and the atmospheric effect
on Landsat images. Time series decomposition can capture
the trend, remove the seasonality, and leave out the noise.
The application of the RANSAC algorithm detects the coal
fire burning period and, thus, implements the identification of
the persistent coal fire. Besides, the proposed methodology
facilitates the analysis of coal fire dynamics in the spatial
domain. Long-term high-resolution LST time series presents
the coal fire burning stages and provides a more detailed coal
fire propagation with a more accurate time compared with the
discrete LST data. Furthermore, the proposed methodology
can also be applied for a current coal fire detection synchro-
nized with image acquisitions. At each pixel, the background
(or the calibrated background) LST value can be predicted by
adding the decomposed seasonal component to the fit line [63].
When the new image is acquired, the two LST values can be
compared. If the LST calculated from Landsat images is much
higher than the predicted one, the pixel has a large possibility
to be a coal fire pixel.

LST is a key variable for climate and ecological environ-
ment research. The spatial and temporal variabilities of LST
are significant in understanding the natural and anthropogenic
phenomena and processes on the land surface [64], [65].
The proposed methodology might be applied to estimate
these long-term changes of the land surface, e.g., geothermal
anomalous changes [57], [66], volcanic activities [67], glaciers
melting [68], and permafrost thawing [69]. The proposed
methodology can also be applied to other seasonal remote
sensing data or products, e.g., normalized difference vegetation
index and land surface deformation.

There are assumptions, limitations, or delimitations in this
study. First, for the data resources and data preprocessing, only
daytime TIR data from Landsat and only statistical monowin-
dow algorithms were employed. The gaps on Landsat 7 data,
and the image striping and image banding on Landsat 8 TIRS
data may affect the results of this study. Second, the results
from the RANSAC algorithm show some inaccuracy in some
areas because of the shifted fit line, possibly caused by the
number of inliers less than 50%. The representative areas are
the areas surrounding GPS5, GP7, GP12, and GP14. In this
case, it means that the areas suffer coal fire burning for a
long time. Although the fit lines have been calibrated with the
field surveys, the calibration also has some uncertainty due to
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the limited field surveys. Finally, the threshold, i.e., 1.5 °C,
for judging the coal fire period is determined based on the
statistics of the LST values in the background areas without
considering the characteristics of the land.

In future study, first, higher quality data and more advanced
algorithms can be employed to improve the capability in
identifying the thermal anomalies. Data can be a higher
spatial resolution (e.g., unmanned aerial vehicle) [13] data,
more nighttime Landsat or ASTER images, and more aux-
iliary, e.g., geological, geomorphological, and meteorologi-
cal data. Algorithms include more accurate TIR calibration
methods [35], [43], [44], more efficient LST retrieval algo-
rithms [70], and fusion algorithms on data with different
spatial resolution or with different time (daytime or nighttime)
or from different sensors [71], [72]. Second, the shift of the
fit line from RANSAC can be fixed by considering more field
surveys or trying optimal RANSAC [73]. The thresholds for
judging the coal fire burning period can be modified based on
the characteristic of land in each pixel and the field surveys.
Once the background values and the threshold for the burning
stages are determined, the coal fire situation will be clearer.
Moreover, auxiliary data, such as meteorological parameters
and coal geology, can be collected to understand the persistent
coal fire dynamics and develop strategies to prevent coal fire
hazards.

VI. CONCLUSION

In this study, a comprehensive methodology for monitoring
persistent coal fires was proposed. Time series decomposition
and analysis were applied to the pixelwise LST derived
from 35 years’ Landsat images for monitoring the long-term
persistent coal fire dynamics. Coal fire areas were identified by
the statistical information of the decomposed LST trend com-
ponents. The gradual and abrupt LST changes were detected
by the Mann—Kendall and the Pettitt tests, showing the pos-
sible evolution of the coal fire burning stages. The RANSAC
and the SAX algorithms were applied to trend components
vectors to judge the coal fire burning period and evaluate the
robustness of the results. Calibration was conducted according
to the filed surveys, obtaining a spatiotemporal 3-D diagram
showing both spatial and temporal coal fire dynamics in the
Wuda coalfield from 1986 to 2020. The achieved results were
well-matched with the field surveys in 2002-2010 and 2018,
and with the RAE result in 2014, proving the validity and
feasibility of the proposed methodology. The methodology
fully excavates the capability of the long-term remote sensing
data and employed them to a persistent and dangerous hazard
with great performance. This study can provide a scientific
basis for the prevention and mitigation of coal fire hazards
and further protect the resources and environments. In future
studies, more auxiliary data, such as field surveys, and geolog-
ical and meteorological data, can be collected to understand
the coal fire phenomenon and improve the accuracy of coal
fire monitoring.
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